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lt excess in the rhizosphere induces osmotic, nutritional and metabolic disturbances that bring 
out crop growth reduction and yield losses. While largely documented in the literature, these 
turbances are separately analyzed in term of anatomy and time course that are usually limited 
 experiment conditions. It is of necessity to establish a chronology of changes involved during 
lt stress at different anatomical levels of plant. In the present review, we attempted to dissect 
d locate physiological and molecular events that occurred upon exposure of higher plants to 
lt stress. This analysis integrated various experimental approaches to give further 
derstanding on salt stress response and to highlight valuable traits of salt sensitivity/tolerance 

 plants. 
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Plant tolerance to salt is defined as the 
ility to withstand effects of salt excess in the 
edium (Maas, 1993). Referring to this 
finition, considerable research is 
dertaken to evaluate plants material 
sponse to salinity using multiple 
perimental models. Generally, studying salt 
ess effects on higher plants revolves 
ound three main research areas (i) 
echanisms of salt ions transport across cell 
embranes (Apse and Blumwald, 2007). It 
ludes a physiological and molecular study 

 ion transporters involved in the collection, 
trusion, compartmentalization and mobility 
ntrol of salt ions in plants (Diédhiou and 
lldack, 2006; Takahashi et al., 2009). (ii) 

etabolic pathways involved to conquer salt 
xicity (see Hasegawa et al., 2000).  (iii) 
gulation of genes expression under salt 
ess (Xiong and Zhu, 2002; Silva-Ortega et 
, 2008). This kind of research is improved 
 advances in molecular biology, including 
e use of genomics that allows rapid analysis 
 large numbers of genes (Seki et al., 2001; 
n et al., 2010). Eventually, these works 

aimed to select biomarkers that have 
physiological significance and enable to 
predict plant tolerance to salt stress (Zhu, 
2000; Xiong and Zhu, 2001).  

Actually, new features of tolerance or 
sensitivity to salt are being identified in order 
to improve or to select cultivars for agriculture. 
Moreover, these new data allow a revision of 
the traditional classification of plants to 
halophytes and glycophytes, based on the 
ability to grow on saline medium (Flowers et 
al., 1977) without taking in account 
experiment duration and specific tissue or 
subcellular responses. In the present review, 
we go over the sequential occurrence of main 
events upon exposure to salt stress at 
different plant scales. 
 
SPATIAL PATTERN OF SALT STRESS-
INDUCED CHANGES  
 
Changes at the whole plant scale: Plant 
tolerance to salt excess at the whole plant 
level is determined by its ability (a) to prevent 
the absorption of salt ions, which depends to 
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the root system selectivity (Amtmann and 
Sanders, 1999); (b) to control the loading of 
salt ions into xylem; (c) to the desalinization of 
xylem sap: salt ions are retained in the roots, 
stems, petioles and leaf sheaths, involving 
exchange of Na+/ K+ ions between the sap 
and the root cells or conducting vessels of the 
stem-petioles system; (d) to re-export salt ions 
into phloem, thereby avoiding the 
accumulation of Na+ and Cl- in the developing 
tissues at the aerial part (Figure 1), (e) to 
sustain ion homeostasis; (f) to excrete salt 
ions through special glands on the leaf 
surface of some halophytes plants (Figure 1, 
see Barhoumi et al., 2007).  
 
Changes at the cell scale: Salt tolerance at 
the cell level is determined by sustaining 
adequate metabolic activity despite the 
accumulation of salt ions. This is ensured by 
sufficient osmotic adjustment, salt ions 
sequestration to maintain integrity of enzyme 
systems within different cellular compartments 
and keeping hormonal balance that regulates 
growth activity.  
 

Osmotic adjustment and safety of cell 
machinery: Sequestration of Na+ and Cl- into 
vacuole is balanced by concomitant 
accumulation of K+ and organic osmolytes in 
the cytoplasm (Lee et al., 2008). Generally, 
organic osmolytes are present as simple 
sugars (fructose, glucose), sugar with alcohol 
function (glycerol, sorbitol, inositol methyl), 
and complex carbohydrates (theralose, 
raffinose). Likewise, osmolytes may be 
compatible polyamine compounds (proline, 
glycine betaine, alanine betaine, proline 
betaine, tetrahydro-2-methyl-4-carboxy 
pyrimidine), or sulfated compounds (choline 
sulfate, dimethyl sulfonium propironate) 
(Nuccio et al., 1999). These compounds can 
be accumulated to high levels without 
disrupting cellular metabolism, with negligible 
effect on pH and charge balance in the 
cytosol or inside organelles. 

However, the signal transduction 
pathways leading to the formation of these 
osmolytes are not yet elucidated (Hare et al., 
1999). For example, genes involved in 
biosynthesis of proline are partly induced by 
salt or water stress (Xiong et al., 2001; Ortega 
et al., 2008). On the other hand, expression of 
genes encoding enzymes of proline 
catabolism is often repressed by the same 
type of stress (Reymond et al., 2000). In 

addition, the biosynthesis of osmolytes may 
be subject to negative feedback. Thus the 
production of proline in plants is regulated by 
levels of P5CS enzyme (∆1-pyrroline-5-
carboxylate synthetase) (Hong et al., 2000). 

Besides their osmotic functions, these 
compounds have a protective role on 
cytoplasmic proteins (Hong et al., 2000; 
Munns, 2002; Hoque et al., 2007). 
Particularly, they enable to alleviate effects of 
reactive oxygen species (ROS) on enzyme 
activities (Holmstrom et al., 2000). For 
instance, glycine betaine ensures the integrity 
of the plasma membrane and thylakoids 
under salt or heat stress conditions (Rhodes 
and Hanson, 1993). However, detoxification of 
ROS generated by salt stress involves 
antioxidant enzymatic pathways that are more 
efficient than accumulation of osmolytes (Tsai 
et al., 2004), such as superoxide dismutase, 
catalase and ascorbate peroxidase (Wang et 
al., 2009). The increased activity of these 
enzymes is often correlated with improved 
plant tolerance to salt stress (Tsugane et al., 
1999). 

 
Maintain of hormonal Balance: Inhibition of 
plant growth by salt stress at cellular scale 
occurs through a decrease in cell expansion 
and division. Disruption of these processes is 
linked to hormonal imbalance induced by 
salinity (Wang et al., 1998). Plant hormones 
(abscisic acid, gibberellic acid, cytokinins) are 
growth regulators and their exogenous 
application can increase tolerance to salt 
(Xiong and Zhu, 2002). In particular, abscisic 
acid (ABA) was found to be involved in gene 
expression in response to salt stress (Rock, 
2000, Zhu et al., 1997). Induction of ABA 
synthesis by salt stress or drought in the roots 
is an endogenous signal conveyed through 
the transpiration stream to regulate organ 
growth of the aerial part and the opening of 
the stomata (Davies and Zhang, 1991). Also, 
the induced accumulation of ABA maintains 
root elongation despite the drop in water 
potential under salt stress (Saab et al., 1990). 
Several authors consider that the beneficial 
effects of ABA result from its inhibitory action 
on the synthesis or the signaling pathways of 
ethylene (Spollen et al., 2000; Sharp, 2002). 
Indeed, stimulation of root elongation was 
obtained when applying an inhibitor of 
ethylene biosynthesis (Spollen et al., 2000). In  
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maintained by pH gradient between both 
sides of the plasma membrane (Blumwald et 
al., 2000). These processes cooperate to 
control the absorption and 
compartmentalization of salt into vacuoles 
through Na+/H+ plasmic and tonoplastic 
antiporters (Blumwald et al., 2000).  

It has been shown that Arabidopsis cells 
have a plasma membrane Na+/H+ carrier 
specific to Na+ (Xiong and Zhu, 2002). This 
transporter is encoded by SOS1 gene (Salt 
Overly Sensitive 1) (Figure 1). The over-
expression of SOS1 in Arabidopsis increases 
tolerance to salt stress of transformed plants. 
The catalytic activity of SOS1 type (Na+/H+) 
was demonstrated in vitro in various species 
including tomato. The activity of SOS1 in 
Arabidopsis is regulated by a complex of two 
proteins known as SOS2 and SOS3. Firstly, 
high concentrations of Na+ in the medium 
induce a rapid increase in the concentration of 
Ca2+ in the cytoplasm. Protein SOS3, termed 
Ca2+-sensor is activated by calcium flux. In 
turn, SOS3 interacts with and activates 
protein kinase SOS2. Protein SOS2 in the 
active state regulates the Na+ efflux against 
the influx of H+ at the transporter SOS1. Also, 
SOS2 is involved in the induction of genes 
involved in ion homeostasis. At the tonoplast, 
SOS2 activates the Na+/H+ ATPase and 
pyrophosphatase (Figure 1). Several authors 
suggest that plants grown in the absence of 
salt stress have probably lost the SOS 
mechanism for regulating Na+ homeostasis. 

 
CHRONOLOGICAL PATTERN OF SALT 
STRESS-INDUCED CHANGES 

New approaches towards salt stress 
studies emphasized the importance of 
treatment duration (Munns, 2002; Debouba et 
al., 2007; Pinheiro et al., 2008). It was stated 
that when exposure duration to salt is not 
enough long, differences in growth between 
tolerant and sensitive species are not 
significant (Munns et al., 1995; Pinheiro et al., 
2008). 
 
Responses to short term salt stress: 
Sudden addition of salt in the culture medium 
is instantly associated with changes in growth 
rate in leaves. A rapid and transient decline in 
the rate of leaf expansion has been reported 
in maize (Cramer and Bowman, 1991, 
Neumann, 1993), rice (Yeo et al., 1991), 
wheat and barley (Passioura and Munns, 
2000). Similar effects were found in the 

presence of KCl, mannitol or polyethylene 
glycol (PEG) (Yeo et al., 1991; Chazen et al., 
1995). This finding indicates that the abrupt 
decrease in growth is not specific to salt 
stress, it is rather associated to a rapid 
change of cells water status. Passioura and 
Munns (2000), showed that this phase of 
rapid decline in growth can be prevented if we 
maintain a fairly high water status in leaf cells. 
Likewise, roots growth rate is rapidly and 
temporarily reduced upon exposure to NaCl 
(Rodriguez et al., 1997). Similar effects were 
also obtained in the presence of KCl and 
mannitol, confirming that this response is 
related to a sudden change of water status in 
root cells (Frensch and Hsiao, 1995).  

After several minutes, the rate of leaf 
growth recovered gradually to stabilize at a 
low level of activity (Passioura and Munns, 
2000). It should be noted that the resumption 
of low growth activity observed in the 
presence of NaCl, is also obtained with 
equivalent doses of mannitol or KCl, indicating 
that this phase of low activity is not 
necessarily due to the presence of Na+ and 
Cl- (Yeo et al., 1991; Passioura and Munns, 
2000). 

Growth recovery is tightly dependent on 
plant tissue and severity of stress (Frensch 
and Hsiao, 1997; Lacerda et al., 2005). Hsiao 
and Xu, (2000) showed that recovery of 
growth in salt stressed maize was faster in 
roots than in leaves. Frensch and Hsiao, 
(1997) found that growth recovery in the roots 
occurs 01 hour after application of a moderate 
osmotic stress (0.1 to 0.4 MPa), whereas 
Rodriguez et al. (1997) reported that it takes 
24 hours after treatment if we apply higher 
doses of osmoticum (0.7 MPa or 150 mM 
NaCl). 

 
Response to long term salt stress 

After at least 24 hours of salt treatment, 
growth rate reached a low level of activity, 
particularly in leaves (Munns and Sharp, 
1993). This is related to osmotic effects of 
salinity, since at this stage salt ions have not 
reached toxic levels in cells (Hu and 
Schmidhalter, 1998). 

 Beyond 24 hours of salt treatment, data 
on water status are no longer sufficient to 
explain the variations in growth rate activity. 
Indeed, at this stage of treatment, improving 
water status of leaf cells did not prevent the 
salt-induced decrease in plant growth and leaf 
expansion (Gowing et al., 1990; Munns et al., 
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2000; Taleisnik et al., 2009). These results 
support the involvement of plant hormones, 
rather than water status or ion toxicity in 
growth regulation. 

After several days, salt ions accumulate 
to toxic levels, and the effects become visible 
especially in older leaves (Munns, 1988). Salt 
toxicity is usually due to the inability of cells to 
effectively compartmentalize salt ions into 
vacuoles. During treatment, concentration of 
salt ions increases more rapidly in the 
cytoplasm than in vacuole (Rawson et al., 
1988). Consequently, apoplastic and 
symplasmic accumulation of salt ions can 
cause enzymes inactivation and cell 
dehydration (Nomura et al., 1998). 

 Obviously, effects of salt stress are more 
perceptible after weeks of treatment, 
particularly in sensitive species (Pinheiro et 
al., 2008). These effects manifested by 
yellowing leaf and fall of older leaves. The 
rate of loosing leaves will determine the length 
of plant survival period on saline medium. 
Although, plant can survive if the appearance 
of new leaves rate exceeds that of the loss of 
old leaves. 

 The survival of perennial plants in saline 
environment depends on their ability to 
prevent the accumulation of salt ions at levels 
toxic in old leaves and maintain an adequate 
rate of emerging new leaves. In addition, at 
this developing stage, plant should save the 
reproductive organs from salt ions toxicity. In 
cereals, salinity reduced the number of flower 
buds, disrupts and delays flowering and 
maturity of plants (Munns and Rawson, 1999). 
However, the salt ions are usually 
accumulated at low levels in reproductive 
organs (Na+ = 50 mM and Cl- = 5-15 mM). 

It appears that reproductive development 
is more sensitive to osmotic effects of salt. In 
salt sensitive plants, accumulation of salt ions 
during growth may also cause death of young 
leaves, and these plants could not reach the 
fruiting stage. While tolerant plants maintain 
good vegetative and reproductive activity, 
despite a large accumulation of salt ions in 
their organs (Debez et al., 2004).  

 
CONCLUSION  

Data available in literature show that plant 
response to salt is closely related to the 
duration of treatment, analyzed tissue and 
stage of development. Hence, it seems 
imperative to consider experiment duration, 
especially in comparative studies among 

species. In fact, we should bear in mind that 
response to salt involves physiological and 
molecular events occurring during stress and 
at several anatomical levels. These events 
should be integrated and interpreted at the 
whole plant level to evaluate 
sensitivity/tolerance of species. 
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