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Acute kidney injury (AKI) is a multi-factorial and multi-system disorder which is clinically associated with 
a rapid loss of renal functions. It is described as one of the major contributors to mortality worldwide. 
Modern dialysis techniques and pharmacological therapy had no significant impact on overall mortalities 
caused by AKI. Hence, it becomes important to seek for other therapeutic interventions for AKI 
treatment. Stem cell replacement therapy has a great promise for AKI as it provides an approach for 
repairment of deteriorated organs and tissues. The main target of this research was to appraise the 
therapeutic outcome of bone marrow mesenchymal stem cells (BM-MSCs) and adipose-derived 
mesenchymal stem cells (AD- MSCs) against AKI in rat model. Adult male albino rats were equally 
randomized into nine groups: (1) Control, (2) Cisplatin, (3) Cisplatin+losartan, (4) Cisplatin+BM-MSCs 
(1x106 cells), (5) Cisplatin+BM-MSCs (2x106 cells), (6): Cisplatin+BM-MSCs (4x106 cells), (7) 
Cisplatin+AD-MSCs (1x106 cells), (8) Cisplatin+AD-MSCs (2x106 cells) and (9) Cisplatin+AD-MSCs 
(4x106 cells). The data showed significant enhancement in serum creatinine, urea, kidney injury 
molecule-1, tumor necrosis factor-α, monocyte chemoattractant protein-1, interleukin-18, macrophage 
inflammatory protein-2 and malondialdehyde levels. While, significant inhibition of catalase and 
superoxide dismutase enzymes activity in serum of rats administrated cisplatin has been registered. On 
the contrary, MSCs transplantation could significantly recover renal functions, suppress the inflammatory 
markers, repress the oxidative stress marker and promote the anti-oxidative enzymes activity. The 
histopathological findings illustrated that MSCs have regenerative potentiality as manifested by 
minimizing the inflammatory cells infiltration and congested glomerular capillaries. Conclusively, MSCs 
therapy has a favorable impact in lessening kidney derangement after AKI through monitoring the 
inflammatory response and restoring oxidant/antioxidant homeostasis.  
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INTRODUCTION 

Acute kidney injury (AKI) is a life- threatening 
condition as it is associated with high morbidity, 
mortality, and healthcare costs (Zuk and 

Bonventre, 2017). AKI mainly occurred in patients 
with advanced age, diabetes or vascular diseases 
(Tögel and Westenfelder, 2012). The impact of 
AKI has been estimated to expand dramatically 
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and to date no resolutive therapies exist. AKI is 
characterized by acute damage in renal tubules 
with a rapid aberration in kidney functions. 
Inflammation, oxidative stress and excessive 
deposition of extracellular matrix are considered 
as the molecular events that ultimately lead to the 
end stage renal disease (Bianchi et al., 2014). 

Inflammation is thought to play a principle role 
in AKI pathophysiology (Du and Zhu, 2014). It is 
hypothesized that the initial insult in ischemia, 
sepsis and nephrotoxic AKI models results in 
morphological and/or functional changes in 
vascular endothelial cells and/or in tubular 
epithelium. Then, leukocytes infiltrate into the 
injured kidneys including neutrophils, 
macrophages, natural killer cells, and 
lymphocytes. This injury induces inflammatory 
mediators generation like cytokines and 
chemokines by tubules and endothelial cells 
which implicate to infiltration of leukocytes into the 
kidneys. Thus, inflammation plays a principle role 
in the initiation and extension phases of AKI 
(Akcay et al., 2009). 

Oxidative stress represents a classical 
mechanism that is involved in early inflammation. 
Reactive oxygen (ROS) and nitrogen species 
(RNS) have been implicated in AKI pathogenesis. 
Superoxide anion (O2

•-), nitric oxide (•NO) and 
hydrogen peroxide (H2O2) are generated during 
kidney injury, the interaction between these 
species can generate peroxynitrite (ONOO-), 
which is a key oxidant factor that is directly 
involved in protein oxidation and renal failure 
(Goligorsky et al., 2002). 

Dopamine, furosemide, mannitol, calcium 
channel blockers, and several other hormones or 
pharmacologic therapy proved to be effective in 
experimental models but almost failed in clinical 
protocols (Grino, 1994). The current supportive 
therapy has some improvement but the mortality 
and morbidity rate as consequence of AKI is still 
high (Bianchi et al., 2014). Hence, searching for a 
substitutional therapy that is clinically effective 
and safe enough to improve survival outcomes for 
patients with AKI is deemed necessary. 

Stem cells derived from the adult tissue were 
engaged in both repair and regeneration of 
organs. Circumstantial evidence from human and 
mice indicated that adult stem cells might trigger 
the regeneration of deteriorated tissue. 
Mesenchymal stem cells represent a population of 
self-renewing and multi-potent cells that can be 
isolated from adult tissues (Peired et al., 2016). 
After infusion of MSCs, they engraft in the 
damaged tissue and release key factors that 

enhance cell survival and tissue repair as the 
paracrine/endocrine secretion of bioactive 
molecules is the main mechanism of action of 
MSCs in tissue regeneration (Bianchi et al., 2014). 
This means that MSCs can migrate to the sites of 
inflammation and exert anti-inflammatory effects 
through cell and cell interactions between them 
and lymphocytes or through production of soluble 
factors (Zhao et al., 2014). This process was 
driven by the binding between the chemokines 
released by the injured sites and the receptors 
expressed by MSCs. 

The oxidant/antioxidant homeostasis may be 
modulated by infusion of MSCs in post-ischemic 
kidneys. Zhuo et al., (2011) commented that 
MSCs infusion improved the activity of superoxide 
dismutase (SOD) significantly, a critical molecule 
responsible for reducing oxidative stress, and 
increased glutathione peroxidase (GSH-Px) 
expression, a potent antioxidant enzyme, in 
kidney. Treatment with MSCs also results in a 
significant reduction in malondialdehyde (MDA) 
levels, which is associated with renal injury. 
Moreover, de Almeida et al., (2013) noticed that 
MSCs can regulate the oxidant/antioxidant 
balance after renal injury via heme oxygenase-1 
(HO-1) and erythropoietin (EPO), both of them 
contribute to lower oxidative stress and to 
functional renal recovery (de Almeida et al., 
2013). 

The purpose of this study was to elucidate the 
therapeutic effectiveness of BM-MSCs and AD-
MSCs injected in different doses in antagonizing 
cisplatin- induced AKI in rats in order to facilitate 
the development of MSCs therapy in AKI patients. 
Also, the aim of the study was extended to gain 
better understanding of the anti-inflammatory and 
antioxidant capacity of MSCs in manipulating AKI. 
 
MATERIALS AND METHODS 

A- Preparation of bone marrow- MSCs (BM-
MSCs) 

Bone marrow was harvested by flushing the 
tibiae and femurs of 6-week-old male white albino 
rats with Dulbecco’s modified Eagle’s medium 
(DMEM, GIBCO/BRL) supplemented with 10% 
fetal bovine serum (GIBCO/BRL). Nucleated cells 
were isolated with a density gradient [Ficoll/Paque 
(Pharmacia)] and re-suspended in complete 
culture medium supplemented with 1% penicillin–
streptomycin (GIBCO/BRL). Cells were incubated 
at 37°C in 5% humidified CO2 for 12–14 days as 
primary culture or upon formation of large 
colonies. When large colonies developed (80–
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90% confluence), cultures were washed twice with 
phosphate buffer saline (PBS; GIBCO/BRL) and 
the cells were trypsinized with 0.25% trypsin in 
0.01% EDTA (GIBCO/BRL) for 5 min at 37°C. 
After centrifugation, cells were resuspended in 
serum supplemented medium and incubated in 50 
cm2 culture flask (Falcon). The resulting cultures 
were referred to as first-passage cultures (Abdel 
Aziz et al., 2007). 

B- Preparation of adipose tissue derived MSCs 
(AD- MSCs) 

Adipose tissue was excised from both the 
omentum (i.e., abdominal) and the inguinal fat pad 
(i.e., subcutaneous) of male albino rats under 
general anesthesia according to Tomiyama et al. 
(2008). The adipose tissue was resected and 
placed into a labeled sterile tube containing 15 mL 
of a phosphate-buffered saline (PBS; 
GIBCO/BRL). Enzymatic digestion was performed 
using 0.075% collagenase II (Serva 
Electrophoresis GmbH, Mannheim, Germany) in 
Hank’s balanced salt solution for 60 min at 37oC 
with shaking. Digested tissue was filtered and 
centrifuged, and erythrocytes were removed by 
treatment with erythrocyte lysis buffer. The cells 
were transferred to tissue culture flasks with 
DMEM supplemented with 10% FBS and, after an 
attachment period of 24 hours, non-adherent cells 
were removed by a PBS wash. Attached cells 
were cultured in DMEM media supplemented with 
10% FBS, 1% penicillin-streptomycin 
(GIBCO/BRL), and expanded in vitro. When large 
colonies of AD-MSCs developed (80-90% 
confluence), cultures were washed twice with PBS 
and the cells were trypsinized with 0.025% trypsin 
and 0.01% EDTA in PBS for 5 min at 37oC. After 
centrifugation, cells were resuspended with 
serum-supplemented medium and incubated in 50 
cm2 culture flask (Falcon). The resulting cultures 
were referred to as first-passage cultures 
(Alhadlaq and Mao, 2004). 

C- Identification of mesenchymal stem cells 

Microscopic follow up and photo-
documentation 

The MSCs in the culture were characterized 
by their adherence to the plate (plastic adherent 
ability) and spindle shapes (elongated shape). 
 
Detection of gene expression of cell surface 
markers (CD29, CD166, CD34 and CD45) 

RNA extraction from MSCs 
In order to confirm that the isolated cells from 

both bone marrow and adipose tissues are MSCs, 
total RNA was extracted from cultured cells using 
RNeasy mini kit for purification of total RNA from 
cultured cells (Qiagen, Germany) according to the 
manufacturer's instructions. 

Reverse Transcription  
The reverse transcription was carried out 

using complementary DNA (cDNA) reverse 
transcription kit to convert total RNA into cDNA 
(Applied Biosystems, USA) according to the 
manufacturer's protocol. 

Conventional PCR detection of cell surface 
markers (CD29, CD166, CD34 and CD45) gene 
expression 

The conventional PCR reaction mixture for 
CD29, CD166, CD34 and CD45 was 12.5 µL of 
master mix (Qiagen, Germany), 1 µL of forward 
primer, 1 µL of reverse primer  (Invitrogen, USA), 
5 µL cDNA and 5.5 µL nuclease free water. PCR 
was performed using the thermal cycler (Biometra 
T professional, USA). The primer sequences for 
the target genes and the PCR conditions are 
illustrated in Table (1). The PCR product was 
separated by electrophoresis through 2% agarose 
gel, stained with ethidium bromide, and 
photographed using gel documentation apparatus. 

D- Animals 

Model creation and cell transplantation 
Ninty adult male albino rats, with weights 

ranging from 220 g to 250 g, were obtained from a 
breeding stock maintained in the Animal House of 
the National Research Centre, Dokki, Giza, Egypt. 
The animals were housed in transparent plastic 
cages with wood shavings at a freely ventilated 
and naturally illuminated room at a constant 
temperature of 22 ± 0.5ºC. They were fed with 
standard rat diet and water provided ad libitum. 
The animals were allowed to acclimatize in their 
new environment for ten days before the 
commencement of the experiment. AKI was 
induced in the rats by intraperitoneal injection of 
cisplatin in a dose of 6 mg/Kg b.wt (Sigma 
Chemical Co.) (Nemmar et al., 2010). To 
investigate the therapeutic impact of BM-MSCs 
and AD-MSCs in animal model of AKI induced by 
cisplatin, the rats were assigned into nine groups 
(n=10): The control group; rats received a single 
intraperitoneal injection of saline. The cisplatin 
group; rats received a single intraperitoneal 
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injection of cisplatin. Cisplatin + losartan group; 
rats received intraperitoneal single dose of 
cisplatin and then they were treated with losartan 
(Sigma Chemical Co.) in a dose of 10 mg/kg orally 
for two months (Rastghalam et al., 2014). 
Cisplatin + BM-MSCs (1x106 cells/rat) group; rats 
received intraperitoneal single dose of cisplatin 
and then they were infused with BM-MSCs (1x106 
cells/rat) by tail vein (Shaohua and Dongcheng, 
2013). Cisplatin + BM-MSCs (2x106 cells/rat) 
group; rats received intraperitoneal single dose of 
cisplatin and then they were infused with BM-
MSCs (2x106 cells/rat) by tail vein (Tögel et al., 
2007). Cisplatin + BM-MSCs (4x106 cells/rat); rats 
received intraperitoneal single dose of cisplatin 
and then they were infused with BM-MSCs (4x106 
cells/rat) by tail vein (Nakamura et al., 2000). 
Cisplatin + AD-MSC (1x106 cells/rat) group; rats 
received intraperitoneal single dose of cisplatin 
and then they were infused with AD-MSCs (1x106 
cells/rat) by tail vein (Chen et al., 2011). Cisplatin 
+ AD-MSCs (2x106 cells/rat) group; rats received 
intraperitoneal single dose of cisplatin and then 
they were infused with AD-MSCs (2x106 cells/rat) 
by tail vein (Yao et al., 2015). Cisplatin + AD-
MSCs (4x106 cells/rat) group; rats received 
intraperitoneal single dose of cisplatin and then 
they were infused with AD-MSCs (4x106 cells/rat) 
by tail vein. All animals were sacrificed after two 
months of stem cells transplantation. 

Urine, blood and tissue sampling 
At the end of the intervention period, 24 hours 

urine samples were collected via metabolic cages. 
Then, the diets were withheld from the 
experimental rats for 12 hours and the blood 
samples were withdrawn using a retro-orbital 
puncture under diethyl ether anesthesia. Blood 
samples were centrifuged under cooling (4ºC) at 
1800 ×g to separate sera. Serum samples were 
transferred to 1.5 mL of eppendorf tubes and 
stored at -20º C pending further analysis. After 
that, one kidney from each animal was harvested, 
rinsed with saline and fixed overnight in 10% 
formal saline for histological investigation. 

E- Experimental setting 
The experimental protocol was carried out 

according to the approval and guidelines given by 
the National Research Centre Ethical Committee 
which also conformed to the acceptable 
guidelines on the ethical use of animals in 
research.  

F- Biochemical assays 
Serum levels of creatinine, urea, catalase 

(CAT), superoxide dismutase (SOD) and 
malondialdehyde (MDA) were quantified 
enzymatically using commercially available kits 
provided by Bio-Diagnostic Company, Giza, Egypt 
following the methods described by Tietz, (1995); 
Chaney and Marbach, (1962); Aebi (1984); 
Nishikimi et al., (1972) and Satoh (1978), 
respectively. Levels of urinary kidney injury 
molecule-1 (KIM-1), urinary interleukin 18 (IL-18), 
serum tumor necrosis factor (TNF)-α, serum 
monocyte chemoattractant protein (MCP)-1 and 
serum macrophage inflammatory protein (MIP)-2 
were assessed by enzyme linked immunosorbent 
assay (ELISA) using commercially available kits 
provided by Glory Science Co. USA under the 
guidance of the manufacturer. 

G- Histopathological procedures 
The fixed kidney specimens were dehydrated 

in ascending grades of ethanol cleared in xylol 
and then embedded in molten paraffin wax. The 
paraffin blocks were cut into 5 μm thick slices 
using rotary microtome and then stained with 
hematoxylin and eosin (H&E). After staining, the 
slides were viewed with an Olympus CH (Japan) 
light microscope. The image capturing was 
performed with a Sony DSCOW 3 digial Camera 
(Japan) and photomicrograph calibration was 
done with image J (Abramoff et al., 2004). 

H- Statistical analyses 
All data were collected, tabulated and 

statistically analyzed using SPSS 22.0 for 
windows (SPSS Inc., Chicago, IL, USA). The 
experimental results were represented as 
arithmetic means with their standard deviations. 
Least significant difference (LSD) was used to 
compare significance between groups. Difference 
was considered  highly significant when P-value 
was < 0.05. 
 
RESULTS 

Mesenchymal stem cells validation 

Mesenchymal stem cells morphology 
The microscopic images of BM-MSCs and 

AD-MSCs are represented in the following figures: 
Fig. (1) shows the spindle shape of BM- MSCs at 
the 14 day of isolation and culture. Fig. (2) shows 
the spindle shape of AD-MSCs at 14 days.  
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                     Figure. (1) Morphology of BM-MSCs.            Figure. (2) Morphology of AD-MSCs. 

Gene expression of cell surface markers 

BM-MSCs 
To investigate the expression of BM-MSCs 

surface markers (CD29, CD166, CD34 and 
CD45), RNA was isolated from the cultured cells 
and then cDNA was synthesized. Then, PCR was 
performed using the primers described in Material 
and Methods section. The agarose gel 
electrophoresis showed that the isolated BM-
MSCs in the present study were positive for CD29 
(Lane 2) and CD166 (Lane 3), and negative for 
CD34 (Lane 4)  as well as CD45 (Lane 5) which 
are cell-surface markers associated with 
hematopoietic MSCs. Lane 1 represents ladder 
(100 bp). Lane 6 represents β-actin, Fig. (3). 
 AD-MSCs 

       The expression of AD-MSCs surface markers 
(CD29, CD166, CD34 and CD45) was detected 
through isolation of RNA from the cultured cells 
followed by cDNA synthesis. Then, PCR was 
conducted using the specific primers for each 
surface marker. The agarose gel electrophoresis 
showed that the AD-MSCs were positive for CD29 
(Lane 2) and CD166 (Lane 3) genes expression. 
While negative for CD34 (Lane 4)  and CD45 
(Lane 5)  genes expression. Lane 1 represents 
ladder (100 bp). Lane 6 represents β-actin, Fig. 
(4).  

Biochemical findings 
Table (2) listed the influence of BM-MSCs and 

AD-MSCs transplantation on the levels of serum 
creatinine and urea as well as urinary KIM-1 in 
AKI rat model. The results illustrated that 
creatinine, urea and KIM-1 levels are significantly 
(P< 0.05) elevated in cisplatin group as compared 
to control group. On the opposite side, all the 
treated groups (Losartan- treated group and 
MSCs- treated groups) experienced significant 
(P< 0.05) depletion in their levels versus cisplatin 
group. Of note, there is significant (P< 0.05) 
decline in creatinine, urea and KIM-1 levels in 

MSCs- treated groups (BM-MSCs and AD-MSCs) 
relative to losartan- treated group. Interestingly, 
the decline in serum creatinine and urinary KIM-1 
levels in AD-MSCs- treated groups is more 
pronounced than BM-MSCs- treated groups. 
While the reduction in urea level is more 
prominent in AD-MSCs (4×106)- treated group 
than BM-MSCs (4×106)- treated group. 
       Table (3) depicted the results of the influence 
of BM-MSCs and AD-MSCs transplantation on the 
inflammatory markers in AKI rat model. TNF-α, IL-
18, MCP-1 and MIP-2 levels revealed significant 
(P< 0.05) increase in cisplatin group with respect 
to the control group. Meanwhile, they are 
significantly (P< 0.05) decreased in all treated 
groups when compared with cisplatin group. 
Notably, the suppression of their levels in all 
MSCs- treated groups is more significant relative 
to losartan- treated group. Noteworthy, the 
depletion of urinary IL-18 level is more obvious in 
AD-MSCs- treated groups than in BM-MSCs- 
treated groups. While, the fall in serum MIP-2 
level is more significant in AD-MSCs (1×106)- 
treated group than BM-MSCs- (1×106) treated 
group. 
 

        The data in Table (4) represented the 
influence of BM- MSCs and AD- MSCs 
transplantation on the oxidant/ antioxidant 
mediators in AKI rat model. Serum MDA level is 
significantly enhanced (P<0.05) in cisplatin group 
as compared to the control group. In contrast 
serum MDA level is significantly (P<0.05) blunted 
in all treated groups versus cisplatin group. There 
is also significant (P< 0.05) decline in serum MDA 
level in BM-MSCs and AD-MSCs- treated groups 
compared to losartan- treated group. It is relevant 
to note that serum MDA level is decreased more 
significantly in AD-MSCs- treated groups than 
BM-MSCs- treated groups. Serum CAT and SOD 
enzymes activity is significantly inhibited in 
cisplatin group in respect to control group. 
Conversely, they were significantly amplified in all 
treated groups when compared with cisplatin 
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group. There are also significant (P< 0.05) 
increase in CAT and SOD enzymes activity in BM-
MSCs and AD-MSCs- treated groups versus   
losartan- treated group. It would be pertinent to 
mention that the activity of these enzymes are 
increased more significantly in AD-MSCs- treated 
groups than BM-MSCs treated groups. 
   
Histopathological observations 

       To evaluate the favorable impact of BM- 
MSCs and AD-MSCs transplantation on the 
severity of acute kidney injury, histopathological 
examination based on the typical microscopic 
features of kidney tissue sections was adopted 
(Fig.5). 
 

 
 

Figure. (3): RT-PCR analysis for CD29, CD166, CD34 and CD45 genes expression for BM-MSCs. 

 

Figure. (4): RT-PCR analysis for CD29, CD166, CD34 and CD45 genes expression for AD-MSCs. 
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 Plat (1)                                              Plat (2)                                                 Plat (3) 
 

                
 

                              Plat (4)                                               Plat (5)                                                 Plat (6) 
  

                 
 

                                Plat (7)                                             Plat (8)                                                  Plat (9) 

 
Fig. (5): Transverse section through the kidney demonstrating histopathological changes in all 

studied groups. Plat (1): Control group showing normal histological structure of the glomeruli and 

tubules (H&E ×40).Plat (2): Cisplatin group showing marked inflammatory infiltrate involving most of the 

renal tubules with interstitial exudates (H&E ×40). Plat (3): Cisplatin + Losartan group showing large 

number of mononuclear cells infiltrates many tubules with congested glomerular capillaries (H&E ×40). 

Plat (4): Cisplatin + BM- MSCs (1×106) group showing moderate inflammatory infiltrate involving group of 

tubules with the adjacent glomerulus, congested blood vessels associated with interstitial hemorrhage 

and exudates (H&E ×40). Plat (5): Cisplatin + BM-MSCs (2×106) group showing shrunken glomerulus with 

wide Bowman' space. Congested blood vessels, interstitial hemorrhage and exudate as well as few 

inflammatory cells (H&E ×40). Plat (6): Cisplatin + BM-MSCs (4×106) group showing no histological 

alterations (H&E ×40). Plat (7): Cisplatin + AD-MSCs (1×106) group showing congested blood vessels, 

hyaline casts and minimal inflammatory infiltrate (H&E ×40). Plat (8): Cisplatin + AD-MSCs (2×106) group 

showing localized collection of inflammatory cells and histiocytes surrounded by regenerated tubules 

(H&E ×40). Plat (9): Cisplatin + AD- MSCs (4×106) group showing well-formed glomeruli and tubules with 

no histological alteration (H&E ×40). 
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Table (1): Primer sequences of the target genes used for PCR and the PCR conditions 

Genes Primer sequences PCR conditions References 

 
CD29 

 

 
F: AATGTTTCAGTGCAGAGC 
R:TTGGGATGATGTCGGGAC 

 

94°C for 30 s, 35 cycles at 
57°C, 72ºC for 30 s 

 
Wang et al., (2004) 

 
CD166 

 
F:GCTCCCCAGTATTTATTGCCTTC 

 
R:GTAGCACCT TTCCATTCCTGTA 

94°C for 30 s, 35 cycles at 
58°C, 72ºC for 30 s 

 
Tan et al., (2013) 

 
CD34 

 

 
F: GCCCAGTCTGAGGTTAGGCC 
R:ATTGGCCTTTCCCTGAGTCT 

 

94°C for 30 s, 35 cycles at 
55°C, 72ºC for 30 s 

 

 
Qin et al., (2011) 

 
CD45 

 
 
 
 

F:ACCAGGGGTTGAAAAGTTTCAG 
R:GGGATTCCAGGTAATTACTCC 

94°C for 30 s, 35 cycles at 
57°C, 72ºC for 30 s 

 
Muñoz-Fernández et al., (2006) 

 

β-
actin 

F: AGACCTTCAACACCCCAG 
R: CACGATTTCCCTCTCAGC 

94°C for 30 s, 35 cycles at 
56°C, 72ºC for 30 s 

 
Qu et al., (2016) 

 
 

Table (2): Influence of BM-MSCs and AD-MSCs transplantation on serum creatinine, urea and 
urinary KIM-1 levels in AKI rat model. Data were represented as Mean ± S.D of 10 rats/group. 

Groups Creatinine (mg/dL) Urea (mg/dL) KIM-1 (ng/L) 

Control group 0.50 ± 0.02c 43.14 ± 2.34 c 68.15 ± 2.73 c 

Cisplatin group 2 ± 0.11d 77.09 ± 3.96 d 119.66 ± 4.90 d 

Cisplatin + losartan group 0.94 ± 0.02 64.94 ± 2.78 92.61 ± 4.40 

Cisplatin + BM-MSCs (1×106) group 0.86 ± 0.019 abe 55.18 ± 1.2 ab 87.98 ± 2.00 abe 

Cisplatin + BM-MSCs (2×106) group 0.77 ± 0.03 abf 48.9 ± 2.8 ab 84.17 ± 3.70 abf 

Cisplatin + BM-MSCs (4×106) group 0.64 ± 0.016 abg 46.12 ± 3.14 abg 77.53 ± 2.36 abg 

Cisplatin + AD-MSCs (1×106) group 0.78 ± 0.019 ab 51.42 ± 1.75 ab 84.88 ± 4.15 ab 

Cisplatin + AD-MSCs (2×106) group 0.69 ± 0.020 ab 47.72 ± 2.05 ab 80.61 ± 2.88 ab 

Cisplatin + AD-MSCs (4×106) group 0.56 ± 0.02 ab 44.90 ± 1.5 ab 72.66 ± 2.17 ab 
 
a: Significant difference between each group and cisplatin group, b: Significant difference between each group and cisplatin + 
losartan group, c: Significant difference between control group and cisplatin group, d: Significant difference between cisplatin group 
and cisplatin + losartan group, e: Significant difference between cisplatin+ BM-MSCs (1×106) group and cisplatin+ AD-MSCs (1×106) 
group, f : Significant difference between cisplatin+ BM-MSCs (2×106) group and cisplatin+ AD-MSCs (2×106) group, g: Significant 
difference between cisplatin+ BM-MSCs (4×106) group and cisplatin+ AD-MSCs (4×106) group. 
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Table (3): Influence of BM-MSCs and AD-MSCs transplantation on the inflammatory markers (TNF-
α, IL-18, MCP-1 and MIP-2) in AKI rat model. Data were represented as Mean ± S.D of 10 

rats/group. 

Groups TNF-α (pg/mL) 
IL-18 

(pg/mL) 
MCP-1 (pg/mL) 

MIP-2 
(pg/mL) 

Control group 44.10 ± 2.81 c 63.71 ± 1.74 c 46.65 ± 4.16 c 6.71 ± 0.32 c 

Cisplatin group 90.04 ± 3.81 d 124.33 ± 3.33 d 93.99 ± 2.95 d 24.36 ± 1.21 d 

Cisplatin + losartan group 56.75 ± 1.99 89.50 ± 2.91 58.30 ± 1.72 15.92 ± 1.73 

Cisplatin + BM-MSCs (1×106) group 54.43 ± 1.75 ab 78.56 ± 1.93abe 55.98 ± 1.74 a 11.90 ± 0.55 abe 

Cisplatin + BM-MSCs (2×106) group 51.23 ± 1.97 ab 75.01 ± 2.24 abf 52.88 ± 2.59 ab 10.49 ± 0.47 ab 

Cisplatin + BM-MSCs (4×106) group 48.55 ± 2.17 ab 72.14 ± 3.17     abg 49.93 ± 2.41 ab 8.89 ± 0.54 ab 

Cisplatin + AD-MSCs (1×106) group 53.50 ± 2.29 ab 75.70 ± 1.33 ab 54.85 ± 2.48 ab 10.99 ± 0.54 ab 

Cisplatin + AD-MSCs (2×106) group 49.70 ± 2.06 ab 71.01 ± 1.08 ab 51.45 ± 2.63 ab 9.94 ± 0.30 ab 

Cisplatin + AD-MSCs (4×106) group 47.53 ± 2.05 ab 68.03 ± 1.29 ab 48.83 ± 2.42 ab 8.21 ± 0.38 ab 

 
a: Significant difference between each group and cisplatin group, b: Significant difference between each group and cisplatin + 
losartan group, c: Significant difference between control group and cisplatin group, d: Significant difference between cisplatin group 
and cisplatin + losartan group, e: Significant difference between cisplatin+ BM-MSCs (1×106) group and cisplatin+ AD-MSCs (1×106) 
group, f : Significant difference between cisplatin+ BM-MSCs (2×106) group and cisplatin+ AD-MSCs (2×106) group, g: Significant 
difference between cisplatin+ BM-MSCs (4×106) group and cisplatin+ AD-MSCs (4×106) group. 

Table (4): Influence of BM-MSCs and AD-MSCs transplantation on the oxidant/ antioxidant 
mediators in AKI rat model. Data were represented as Mean ± S.D of 10 rats/group. 

Groups MDA (nmoL/L) CAT (U/mL) SOD (U/mL) 

Control group 5.56 ± 0.40 c 7.15 ± 0.50 c 3.38 ± 0.29 c 

Cisplatin group 9.96 ± 0.28 d 2.99 ± 0.16 d 1.60 ± 0.13 d 

Cisplatin + losartan group 7.20 ± 0.22 5.22 ± 0.29 2.03 ± 0.13 

Cisplatin + BM-MSCs (1×106) group 7.05 ± 0.18 ae 5.40 ± 0.24 ae 2.12 ± 0.14 ae 

Cisplatin + BM-MSCs (2×106) group 6.80 ± 0.16 abf 6.06 ± 0.31 abf 2.31 ± 0.13 abf 

Cisplatin + BM-MSCs (4×106) group 6.54 ± 0.14 abg 6.26 ± 0.28 abg 2.82 ± 0.13 abg 

Cisplatin + AD-MSCs (1×106) group 6.66 ± 0.21 ab 6.07 ± 0.22 ab 2.31 ± 0.15 ab 

Cisplatin + AD-MSCs (2×106) group 6.26 ± 0.28 ab 6.43 ± 0.13 ab 2.62 ± 0.12 ab 

Cisplatin + AD-MSCs (4×106) group 5.74 ± 0.36 ab 6.80 ± 0.16 ab 2.98 ± 0.15 ab 
 
a: Significant difference between each group and cisplatin group, b: Significant difference between each group and cisplatin + 
losartan group, c: Significant difference between control group and cisplatin group, d: Significant difference between cisplatin group 
and cisplatin + losartan group, e: Significant difference between cisplatin+ BM-MSCs (1×106) group and cisplatin+ AD-MSCs (1×106) 
group, f : Significant difference between cisplatin+ BM-MSCs (2×106) group and cisplatin+ AD-MSCs (2×106) group, g: Significant 
difference between cisplatin+ BM-MSCs (4×106) group and cisplatin+ AD-MSCs (4×106) group. 
 

DISCUSSION 
Due to more people being affected and the 

accelerating importance of AKI, revealing the 
underlying mechanisms and developing efficient 
therapeutic approaches are essential. The target 
of the present research work was to investigate 
the potency of MSCs (BM-MSCs and AD-MSCs ) 
in mitigating AKI induced by cisplatin in rats and to 
spotlight on the implication of the anti-
inflammatory and anti-oxidative properties in the 
therapeutic action of MSCs. 

In the present approach, significant elevation 
in serum creatinine level has been found in 
cisplatin group. The studies of Kawai et al. (2005) 
and Filipski et al., (2009) showed parallelism with 
our study. Cisplatin confers nephrotoxicity by 
decreasing GFR basically through damaging the 
S3 segment of the proximal tubules and the distal 

nephron (Arany and Safirstein, 2003). So as GFR 
decreases, serum creatinine level increases 
where serum creatinine concentration is well 
known to have inverse relationship with GFR (Lew 
and Bosch, 1991). 

According to the results of our study, the 
losartan- treated group showed significant 
depression in serum creatinine level. The 
inhibitory effect of losartan on creatinine level 
observed in this study is in concert with the report 
of Kontogiannis and Burns (1998). Losartan 
belongs to angiotensin II blocker family that 
promotes dilatation of the efferent arterioles more 
selectively than the afferent arterioles and inhibits 
the degradation of bradykinin, which cause 
dilation of the efferent arterioles. This action of 
losartan leads to the decrease in intra-glomerular 
pressure and the improvement of glomerular 
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hyperfiltration (Kobori et al., 2013) which 
ultimately resulting in the enhancement of GFR 
and the reduction of serum creatinine level. 

 In the current investigation, mesenchymal 
stem cells- treated groups (BM-MSCs and AD-
MSCs) experienced significant decline in serum 
creatinine level. This finding is in harmony with 
that of Qi and Wu (2013). The favorable impact of 
MSCs on serum creatinine level could be 
attributed to the amplification of GFR via insulin- 
like growth factor (IGF-1) secretion. IGF-1 has 
been found to increase renal blood flow and GFR 
(Bancu et al., 2016) which lead to the reduction of 
serum creatinine level as observed in the current 
results. 

The tabulated results revealed significant 
increase in serum urea level in cisplatin group. 
This aberration in serum urea level as a 
consequence of cisplatin administration is 
comparable to the findings of Filipski et al., (2009) 
and Qi and Wu (2013). The transport of urea from 
blood is primarily done through five types of urea 
transporters (UTs) which enhance kidney 
permeability to the highly polar molecules like 
urea (Sands, 2003; yang and Bankir, 2005). It has 
been found that during severe inflammation as in 
the case of AKI, the down regulation of UTs has 
occurred. This is owing to the pro-inflammatory 
cytokines mainly TNF-α (Bucher and Taeger, 
2002; Bucher et al., 2003). Cisplatin has been 
reported to trigger the production of TNF-α (Liu et 
al., 2006) which may down regulate UTs and 
hence inhibit urea transportation from the blood 
leading to increasing serum urea level.  

Losartan treatment in the present 
investigation brought about significant reduction in 
serum urea level. This goes hand in hand with the 
results of Milan et al., (2016). Those investigators 
mentioned that losartan treatment aggravates 
renal blood flow and inhibits renal vascular 
resistance as well as increases urea clearance 
and so decreases serum urea level. 

MSCs transplantation in the current research 
produces significant decline in serum urea level. 
This observation is in keeping with the previous 
findings of Filipski et al. (2009) and Kawai et al., 
(2006). MSCs infusion has been found to reduce 
TNF-α production (Sherif et al., 2015) which down 
regulates urea transporters. This leads to up 
regulation of urea transporters with consequent 
increase in renal urea excretion and a decrease in 
serum urea level. 

The current results indicated that urinary KIM-
1 level showed significant elevation in cisplatin 
group. This result is concordant with that of Tekce 

et al., (2015). Structurally, KIM-1 has a single 
transmembrane domain and undergoes 
membrane cleavage in proximal renal tubules 
leading to the release of soluble KIM-1 
ectodomain into the urine. Urinary KIM-1 
ectodomain is a sensitive and specific biomarker 
for AKI in humans (Zhang et al., 2007). KIM-1 
cleavage is mediated by ERK activation, and that 
cleavage is enhanced by p38 MAPK. MAPKs 
have also been shown to motivate the expression 
and activation of many types of 
metalloproteinases (1, 2, 3, 9, 10, and 13), that 
also mediate KIM-1 ectodomain shedding in urine 
(Sylvester et al., 2004). It has been found that 
p38, MAPK and ERK are up regulated in AKI 
induced by cisplatin (Jo et al., 2005; Ramesh and 
Reeves, 2005). So, cisplatin causes urinary KIM-1 
shedding via MAPK pathway. 

In this study, losartan- treated group 
experienced significant suppression in urinary 
KIM-1 level. This finding is comparable to that of 
Waanders et al., (2009). MAPKs (p38- MAPK, c-
Jun NH2-terminal kinase [JNK-1 and JNK-2], and 
extracellular signal- regulated kinases [ERK-1 and 
ERK-2]) have been reported to be   incorporated 
in angiotensin II (AII) -induced kidney injury 
(Kumar et al., 2003). AII, a multifunctional 
cytokine of the renin-angiotensin system, acts on 
two main receptor subtypes (AT1 and AT2) to 
exert its physiologic effects (Assender et al., 1997; 
Campbell-Boswell and Robertson, 1981). Both 
AT1 and AT2 receptor subtypes were found to be 
the main actors in MAPKs activation (Alpert et al., 
1992) which increase urinary KIM-1 shedding. 
Thus, the inhibition of AII by AII antagonist such 
as losartan leads to the inhibition of MAPK with 
consequent reduction in urinary KIM-1 level. 

 The present results indicated a significant 
decline in urinary KIM-1 level by MSCs 
transplantation. This result agrees with the study 
of Abouelkheir et al. (2016). It has been reported 
that infusion of MSCs results in a reduction of 
ERK phosphorylation and p38 phosphorylation (Qi  
and Wu, 2013). This leads to a decline in KIM-1 
shedding in urine as shown in the present data. 
The findings of the current work revealed that 
urinary IL-18 level showed significant elevation in 
cisplatin group. This coincides with the studies 
done by  Nozaki et al. (2012). IL-18 is a pro-
inflammatory cytokine that is increased after 
ischemia-reperfusion (IR) injury, glycerol injection, 
and cisplatin-induced kidney injury (Homsi et al., 
2006; Wu et al., 2008). Following stimulation of 
toll like receptor 4 (TLR4) by cisplatin (Arumugam 
et al., 2009), the activation of inflammasome leads 
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to the cleavage of pro-caspase 1 to caspase-1. 
This in turn leads to the cleavage of pro-IL-18 into 
the active IL-18 molecule (Charlton et al., 2014). 

The data of this investigation recorded 
significant blunting in urinary IL-18 level in the 
group of rats treated with losartan. These results 
agree with the result of Marghani et al., (2017). 
The study of Sahar et al., (2005) mentioned that 
AII directly up regulate mRNA and amplified 
protein level of IL-18. Moreover, AII contributes 
significantly in renal diseases, via AT1R, by 
promoting inflammatory response (Benigni et al., 
2010). AII can also act through AT2R, which has 
counter-regulatory action on AT1R (Ohkubo et al., 
1997; Steckelings et al., 2005). The blockade of 
AT1R by angiotensin receptor blockers (ARBs), 
such as losartan, leads to a feedback loop 
resulting in an increase in free angiotensin II and 
stimulation of AT2R with consequent regression of 
the inflammatory response (Naito et al., 2010; 
Habashi et al., 2011). Therefore, the blockade of 
AT2R by losartan is accounted as a probable 
mechanism by which losartan could induce the 
decline of urinary IL-18 level. The present results 
registered significant drop in urinary level of IL-18 
in the groups of rats subjected to MSCs 
transplantation. These results match those 
reported by Tögel et al., (2005) and Sherif et al. 
(2015). MSCs have the ability to significantly 
down regulate the expression of the pro-
inflammatory cytokines like IL- 1β, TNF-α, IFN-γ 
and iNOS. Also, they are capable to up regulate 
the expression of the anti-inflammatory cytokines 
such as IL-10, bFGF and TGF-β in the kidney. 
During injury, MSCs migrate to the damaged site 
and this homing capability is driven by 
chemokines (stromal cell-derived factor-1/CXCR4 
and CD44) released from the damaged site as 
well as from MSCs themselves (Zhu et al., 2006). 
At the site of injury, MSCs have the capacity to 
reprogram monocytes and macrophages to shift 
from a pro-inflammatory state to anti-inflammatory 
one. This shift is paralleled by the decreased 
levels of TNF-α, IL-1β, and IFN-γ (pro-
inflammatory cytokines) which in turn reduce the 
inflammatory response. MSCs also can release a 
number of soluble factors such as IL-1, IL-10 and 
PGE2 to enhance the anti-inflammatory activity 
and decrease the pro-inflammatory action (Tögel 
et al., 2005). 

The results of the current experiment showed 
significant elevation in serum TNF-α, MCP-1 and 
MIP-2 levels in cisplatin group. These findings fit 
similar to findings reported by Ueki et al. (2013). 
Cisplatin has been found to increase the 

degradation of IκB and enhance NF-κB binding 
activity. This effect of cisplatin on these critical 
factors leads to an increase in serum TNF-α level. 
TNF-α in turn stimulates the release of other 
cytokines and chemokines, such as MCP-1 and 
MIP-2 (Banas et al., 1999). 

On the other hand, there were a significant 
decline in TNF-α, MCP-1 and MIP-2 in losartan- 
treated group. This agrees with the result of Amin 
et al., (2017). AII has a pro-inflammatory effect at 
the renal interstitium. Where AII stimulates 
inflammatory cells such as lymphocytes (Nataraj 
et al., 1999) and activates NF-κB in monocytes 
(Ruiz-Ortega et al., 1998). In kidney, AII 
stimulates secretion of chemokines and growth 
factors such as MCP-1 (Ruiz-Ortega et al., 1998). 
AII exerts a pro-inflammatory effect via AT1R 
(Benigni et al., 2010). AT1R is responsible for 
most of the physiological and pathological actions 
of AII, angiotensin II can also act through AT2R, 
which has counter-regulatory actions to AT1R 
(Steckelings et al., 2005). AT1R blockade by 
ARBs such as losartan might lead to a feedback 
loop that increases free AII, consequently 
resulting in the stimulation of AT2R and resulting 
in anti-inflammatory effects (Naito et al., 2010; 
Habashi et al., 2011). So, losartan may have a 
beneficial effect in inflammatory effects produced 
by cisplatin in AKI.        

A significant decline in serum TNF-α, MCP-1 
and MIP-2 levels has been registered in the 
groups of rats submitted to MSCs transplantation. 
MSCs exert immunomodulatory effect on immune 
cells through cell-to-cell contacts and via the 
secretion of cytokines, chemokines and growth 
factors (Bassi et al., 2012; Wang et al., 2012). 
Also, MSCs can inhibit different types of 
inflammatory cells, such as CD4+, CD8+, NK, B 
cells, macrophages, and dendritic cells, while they 
can stimulate other cell types like regulatory T 
cells to further reduce AKI-associated 
inflammation and restore renal functions (Bassi et 
al., 2012). The therapeutic impact of MSCs on 
kidney was confirmed by down regulation of pro-
inflammatory molecules (TNF-α, IL-1α, IL-1β, IFN-
γ and IL-6), adhesion molecules (ICAM-1) and 
chemokines (CXCL-2, MIP-2, G-CSF, GM-CSF, 
KC, MCP-1, MIP-3α, NGF-β and MSP) and up 
regulation of the anti- inflammatory mediators (IL- 
1 and IL-10) (Chen et al., 2011). 

The data of the present experimental setting 
revealed significant increase in serum MDA level 
in cisplatin group as a final product of lipid 
peroxidation. This observation is in congruent with 
that of Khattab et al., (2004). Within the cell, 
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cisplatin is transformed into a highly active form 
that rapidly reacts with thiol-containing antioxidant 
molecules such as glutathione (Siddik, 2003). The 
depletion of glutathione leads to increased 
oxidative stress within the cells. Cisplatin may 
also cause mitochondrial dysfunction and 
increase ROS production through an impaired 
respiratory chain (Kruidering et al., 1997). Finally, 
cisplatin may induce ROS formation via the 
cytochrome P450 (CYP) system (Baliga et al., 
1998).  

Treatment with losartan in the present study 
leads to significant drop in serum MDA level. This 
finding is in parallel to that obtained previously by 
Khattab et al., (2004) and Milan et al., (2016). 
Where administration of losartan as an antioxidant 
could ameliorate this effect. It is documented that 
losartan prevents lipid peroxidation in renal 
tubules (Khattab et al., 2004). So it can reduce the 
production of oxygen free radicals. 

Transplantation of MSCs in AKI rat model 
evoked significant reduction in serum level of 
MDA. This result correlates well with that of  Zhuo 
et al., (2011).  MSCs have the ability to secrete 
HO-1 and EPO, which are potent anti-oxidant 
candidates (Kim et al., 2010). In addition, 
molecules such as iNOS, eNOS and 8-OHdG 
which are associated with the release of free 
radicals, are significantly decreased after MSCs 
transplantation (Liu et al., 2012). Thus, the 
manipulation of these key events by MSCs 
transplantation is accountable for the regression 
of serum MDA level. 

Serum antioxidant enzymes activity (SOD and 
CAT) recorded significant inhibition in cisplatin 
group as shown in the tabulated results. Cisplatin 
induces glucose-6-phosphate dehydrogenase and 
hexokinase activity, which in turn increase ROS 
production and decrease antioxidants activity 
(SOD and CAT) (Yilmaz et al., 2004). Cisplatin 
also increases intracellular Ca2+ level which 
activates NADPH oxidase activity that in turn 
stimulates ROS generation by damaged 
mitochondria (Kawai et al., 2006). 

A significant stimulation of serum SOD and 
CAT activity has been observed in losartan- 
treated group in the current work. Ivanov et al. 
(2014) stated a positive effect of losartan on 
oxidative stress in the postischemic injured 
hypertensive kidney. AII is implicated in the 
generation of ROS. Also, the overproduction of AII 
during AKI (Kontogiannis and Burns, 1998) may 
up regulate the expression and activity of one of 
the major ROS generators (NADPH oxidase) 
(Rajagopalan et al., 1996). Therefore, blocking of 

AII by losartan leads to the reduction of lipid 
peroxidation and amplification of the antioxidative 
defense system (Milan et al., 2016). 

MSCs transplantation in rats bearing AKI 
brought about significant stimulation of SOD and 
CAT activity in serum as registered in the current 
approach. This result agrees with the study of 
Zhuo et al. (2011). MSCs infusion has been found 
to significantly improve the activity of SOD, a key 
mediator responsible for reducing oxidative stress, 
and up regulate GSH-Px expression, a potent 
antioxidant enzyme, in renal tissues. MSCs 
transplantation reduces the molecules associated 
with the release of free radicals such as iNOS, 
eNOS and 8-OHdG (Zhuo et al., 2011; Liu et al., 
2012). MSCs can also control the 
oxidant/antioxidant homeostasis after kidney 
injury, especially via HO-1 and EPO which are 
considered to be potent antioxidant molecules and 
contribute to lower oxidative stress (Vanella et al., 
2012). 

The extent of renal damage was confirmed by 
histopathologic examination of the kidney. 
Histological changes of the kidney in cisplatin 
group revealed acute tubular necrosis, marked 
inflammatory infiltrate involving most of the renal 
tubules and marked dilation of proximal 
convoluted tubules. The changes obtained in the 
present study run parallel with the studies 
documented by Goldstein and Mayor (1982); 
Borch (1987) and Silkemsen et al., (1997).   

On the other side, losartan- treated group 
showed less damage as tubular dilatations were 
smaller and tubular necrosis was absent. While, 
still there was large number of mononuclear cells 
infiltrates many tubules and esinophilic casts in 
some tubules. These changes were in agreement 
with the reports of Zhibin et al., (2012) and Milan 
et al. (2016).  

There was moderate inflammatory infiltrates, 
congestion of the glomuli and cast formation 
observed in cisplatin group treated by low dose of 
BM-MSCs (1x106). In group treated by moderate 
dose of BM-MSCs (2x106), there was congested 
blood vessels, few inflammatory cells and swelling 
of the tubular cells. While in cisplatin group 
treated with high dose of BM-MSCs (4x106), there 
were well-formed tubules. In group treated by low 
dose of AD-MSCs (1x106), congested blood 
vessels, hyaline casts and minimal inflammatory 
infiltrates were indicated. Moderate dose of AD-
MSCs (2x106)showed inflammatory cells and 
swelling of the tubular epithelial cells. While, high 
dose of AD-MSCs (4x106) showed well-formed 
glomeruli and tubules with no histological 
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alterations. This comes in line with the results of 
Morigi et al., (2004, 2010). 

CONCLUSION 
       Based on the aforementioned findings, it is 
reasonable to assume that mitigation of 
inflammatory response and oxidative stress may 
be the probable mechanisms by which MSCs can 
offer its therapeutic action against AKI in the 
experimental model. This suppression stems from 
the capacity of MSCs therapy to repress IL-18, 
TNF-α, MCP-1, MIP-2 and MDA levels as well as 
enhance the antioxidant enzymes activity (CAT 
and SOD). Also, the outcomes of the present 
study delivered an important insight into the 
superior effect of AD-MSCs than BM-MSCs in 
combating AKI in rats. The biological advantages 
of AD-MSCs are attributed to their ability to 
secrete growth factors, proliferate rapidly and 
modulate the immune response more than BM-
MSCs. Finally, these pre-clinical findings justify 
the potential of MSCs against AKI and may be 
clinically beneficial to proceed for further clinical 
trials. 
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