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The Australian redclaw crayfish, Cherax quadricarinatus, is currently an invasive alien species in 
Malaysia. It was initially introduced into Malaysia for aquaculture purposes and aquarium trade but has 
been released into the wild, causing a significant impact on the native freshwater ecosystem. 
Environmental DNA monitoring is an attractive molecular tool for species detection and monitoring in 
aquatic habitat due to its higher sensitivity over the traditional method. In this study, we design the first 
species-specific primer sets that is capable of detecting C. quadricarinatus from the water sample. Two 
species-specific primer sets (CQCOI_F1_R1 and CQCOI_F2_R3) have been designed based on the 
mitochondrial COI gene region. Primer specificity was tested and confirmed on both tissue and water 
samples of targeted species (C. quadricarinatus) and non-targeted species (Cherax destructor, 
Procambarus clarkii, Macrobrachium rosenbergii). Due to the longer primer length that can presumably 
confer higher observed PCR specificity, the CQCOI_F2_R3 primer pair was recommended for future 
field testing. The designed primers can contribute to aquatic biodiversity conservation in Malaysia by 
enabling the early detection, control and management of C. quadricarinatus population. 

Keywords: Cherax quadricarinatus, biodiversity conservation, eDNA, invasive species, species-specific primer 

 
INTRODUCTION 

Non-native crayfish species were introduced 
globally as a result of anthropogenic factors. The 
negative impacts from the introduction include 
suppression of native species, habitat alteration 
which has been reported extensively (Olden et al. 
2006; Coughran et al. 2009; Holdich et al. 2009; 
Kawai et al. 2009; Buřič et al. 2011; Chucholl, 
2016; Patoka et al. 2016). Australian redclaw 
crayfish, Cherax quadricarinatus (Von Martens, 

1868) is among the non-native crayfish that 
become invasive into the Malaysian freshwater 
system. The species native ecosystem ranged 
between the freshwater bodies of Northern 
Queensland and Southern New Guinea (Patoka et 
al. 2016). Their biological features are capable of 
tolerating a wide range of environmental 
parameters such as pH, dissolved oxygen, and 
temperature along with a flexible diet which might 
also help them establish a population in the wild 
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(Bortolini et al. 2007; Patoka et al. 2016). 
The introduction of the crayfish in Malaysia 

was due to aquaculture purposes begins in the 
early 1980s for aquarium trade (Bella et al. 2011; 
Coughran and Leckie, 2007; Faulkes, 2015; 
Naqiuddin et al. 2016). It is believed that the 
crayfish might accidentally escape into the wild 
from the hatchery, or deliberately released by the 
hobbyists (Belle and Yeo, 2010; Gozlan, 2010; 
Belle et al. 2011; Naqiuddin et al. 2016). The 
presence of C. quadricarinatus in the native water 
bodies might cause several impacts such as 
disease spreading, preying on native species and 
habitat alteration. According to Ahyong and Yeo 
(2007), Longshaw (2011) and Saoud et al. (2013), 
Cherax quadricarinatus is a potential host to 
several parasites and diseases including the 
Aphanomyces sp., fungus, bacilliform virus, 
parvovirus and the gram-negative bacteria like 
Rickettsia sp. In addition, James et al. (2014) 
reported that invasive crayfish have the potential 
to affect the growth rate of the native organisms 
and the biomass of algae.  This urges the 
detection and monitoring of this invasive crayfish 
species to avoid further damages to the native 
ecosystem (Hulme, 2012; Lodge et al. 2006, 
2016; Vander Zanden et al. 2010). Species 
detection using traditional survey methods such 
as trapping and netting has several limitations 
such as high cost and laborious with a very low 
detection rate especially when the target species 
is low in abundance (Rees et al. 2014; Schmidt et 
al. 2013; Gu and Swihart, 2004). Some of the 
measures suggested to be taken include the 
usage of effective and highly sensitive technology 
for invasive alien species surveillance, practicing 
proper management of commercial pathways to 
reduce the introduction of alien species. 

Environmental DNA (eDNA) is a new and still 
advancing method used as a monitoring tool in 
the management of aquatic organisms, especially 
invasive ones (Dejean et al. 2012; Lodge et al. 
2012; Goldberg et al. 2013; Piaggio et al. 2013; 
Rees et al. 2014; Takahara et al. 2015; Dougherty 
et al. 2016; Cai et al. 2017). A DNA sample 
extracted from the environmental samples such 
as water, soil, and air without extracting physical 
tissue from the actual target organisms is referred 
to an eDNA (Ficetola et al. 2008; Dougherty et al. 
2016). However, to detect a specific target 
species from these environmental samples, it is 
necessary to acquire a species-specific primer. To 
date, there has been no report on the 
development of C. quadricarinatus species-
specific primer that can be used to detect the 

target species from the water samples in 
Malaysia.  

In this study, we present the species-specific 
primer that can specifically be used in the DNA 
amplification and positive detection of C. 
quadricarinatus from environmental water sample. 

  
MATERIALS AND METHODS 

Tissue Sampling 
A total number of ten samples were obtained 

from aquarium shop in Besut, Terengganu which 
include four Cherax quadricarinatus (Australian 
redclaw crayfish), two Cherax destructor (common 
yabby), two Procambarus clarkii (red swamp 
crayfish) and two Macrobrachium rosenbergii 
(giant freshwater prawn). Muscle tissue were 
collected from the claw part of each sample and 
kept separately into 1.5 mL microcentrifuge tubes 
containing 95% ethanol. 
 

DNA Extraction from Tissue Samples 
Approximately 25 mg of tissue of each sample 

were used for the DNA extraction process using 
FavorPrepTM Tissue Genomic DNA Extraction Kit 
(Favorgen Biotech Corp, Taiwan) following the kit 
protocol. Then, 50 µL of elution buffer was used to 
elute the DNA to provide a better DNA yield and 
concentration. The eluted DNA concentration was 
evaluated by running on 1% agarose gel and 
visualized using FlourChem E. (Protein Simple, 
California, USA). 

 

DNA Extraction from Water Samples 
Four water samples were used for eDNA 

extraction. (1) water sources which consisted of 
C. quadricarinatus, (2) tap water, (3) water 
sources which consisted of other species like 
tilapia, and (4) ddH2O as a negative control. Each 
water sample was filtered separately using 0.22 
µm PES membrane (JET Biofil, China). The 
membrane trapped the genetic component from 
the water and was used for DNA extraction.  The 
membrane is ground in 1.5 mL microcentrifuge 
tubes and proceeded with FavorPrepTM Tissue 
Genomic DNA Extraction Kit (Favorgen Biotech 
Corp, Taiwan) following the kit protocol for DNA 
collection. 
 

Amplification and Sanger Sequencing 
To obtain a sequence that can be used to 

design species-specific primer, a universal primer 
set of Cytochrome Oxidase subunit I (COI) for 
invertebrates designed by Folmer et al. (1994) 
was used with slight modification in annealing 
temperature. Both forward primer LCO1490 (5'-
GGTC AACA AATCA TAAA GATA TTGG-3') and 
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reverse primer HCO2198 (5'-TAAA CTTC AGGG 
TGAC CAAA AAATCA-3') are capable of 
amplifying a sequence of 710 base pair (bp) of 
COI gene fragment. PCR amplification was 
performed using 25 µL PCR mixture which 
consisted of 8.5 µL ddH2O, 1.0 µL 10 µM of 
primers, 12.5 µL exTEN 2xPCR Master-Mix (Axil 
Scientific, Singapore) and 2.0 µL DNA template 
(1-50 ng/µL) on Veriti 96-Well Thermal Cycler 
(Applied Biosystems, California, USA). The PCR 
condition for the optimization process were as 
follow: Initial denaturation 95 °C for 5 minutes, 35 
cycles of denaturation at 95 °C  for 30 sec, three 
replicates annealing at 50 °C, 54 °C and 58 °C 
respectively for 30 sec, and extension at 72 °C for 
45 sec, and final extension at 72 °C for 10 
minutes. The PCR products were run and 
visualised on 2% agarose gel and FlourChem E. 
(Protein Simple, California, USA) respectively. 
Only four successful tissue PCR products of C. 
quadricarinatus were sent for sanger sequencing 
at Apical Scientific Sdn Bhd using BigDye™ 
Terminator v3.1 Cycle Sequencing Kit (Applied 
Biosystems) and proceeded by 3730xl Genetic 
Analyzer (Applied Biosystems). 
 

Sequence Analysis of Tissue Samples 
Successful sequences received from the 

company were aligned using Clustal W in MEGA 
v7 (Kumar et al. 2016). The sequences identities 
were confirmed using Basic Local Alignment 
Search Tool (BLAST) against National Centre for 
Biotechnology Information (NCBI). Within this 
sequence, the conserve region was detected and 
used for the species-specific primer design and 
development of C. quadricarinatus. 
 

Primer Design 
Previous protocol of Miya et al. (2015) on 

primer design and validation was followed in this 
study with slight modification. Species-specific 
primer was designed using Primer3 v0.4.0 
software (Kõressaar and Remm, 2007; 
Untergasser et al. 2012; Kõressaar et al. 2018). 
The conserved region sequence of the C. 
quadricarinatus from the analysis was inserted 
into the primer design software and few sets of 
primer sets were suggested with the amplified 
regions for each primer. The GC ratio was also 
considered in order to find the most suitable 
species-specific primer to be used. Two sets of 
primers were selected (1): CQCOI_F1 and 
CQCOI_R2 which are (5’-AGC CCC TGA TAT 
AGC CTT CC-3’) and (5’– CTG TCC CGA CAC 
CTC TCT CT-3’); and (2): CQCOI_F2 and 

CQCOI_R3 which are (5’– AGC CCC TGA TAT 
AGC CTT CCC TCG AAT AAA-3’) and (5’– GCC 
TAG GTC GAC TGA TGC TCC TGC A-3’) 
respectively. The primer sets were then 
synthesized at Apical Scientific Sdn Bhd. 
 

Primer Validation 
The primer sets specificity was confirmed both 

using in-Silico and in Vitro test. The in-Silico test 
was conducted by analysing the amplified regions 
of the selected primer using BLAST tool in the 
NCBI to validate the significance of the suggested 
regions with other species. In vitro test was 
conducted using the same volume and reagents 
of PCR mixture used during the universal primer 
amplification. The only difference here is the 
newly designed species-specific primer sets were 
used. The thermal condition used for the new 
primer was also similar as the universal COI 
primer and the amplification was performed on 
Veriti 96-Well Thermal Cycler (Applied 
Biosystems, California, USA) but three annealing 
temperature used were 60°C, 64°C and 68°C to 
evaluate the optimum temperature that capable 
producing a bright single band on 2% agarose gel. 
  
Primer Workability Test 

Two Primer workability tests were conducted 
in this study (1) test on 10 DNA template 
extracted from tissue and (2) test on 4 DNA 
template extracted from water. The species-
specific primers designed were used in the 
amplification of all 14 samples. The PCR mixture 
of 25µL which consisted of 8.5µL ddH2O, 1.0 µL 
10 µM of designed species-specific primers, 12.5 
µL exTEN 2X PCR Master-Mix (Axil Scientific, 
Singapore) and 2.0 µL DNA template (1-50 ng/µL) 
on Veriti 96-Well Thermal Cycler (Applied 
Biosystems, California, USA). The thermal 
condition was as follow: initial denaturation 95 °C 
for 5 minutes, 35 cycles of denaturation at 95 °C 
for 30 sec, and extension at 72 °C for 45 sec and 
final extension at 72 °C for 10 minutes. The 
annealing temperature used for the primer was 
based on the optimised annealing temperature in 
primer validation process. The PCR product were 
run on 2% agarose gel to confirm the amplified 
product size. 
 
RESULTS  

COI Gene Amplification from Tissue Samples 
Using an annealing temperature of 54°C, a 

single band at approximately 710 bp was 
observed across all samples (Figure 1), except for 
sample UG2 whereby a faint band at around 
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1,000 bp could be observed.  

 
 

Figure 1: PCR amplification using universal 
COI primer amplified at optimal temperature of 
54°C. CQ C. quadricarinatus; CD C. destructor;  

PC P. clarkii; UG M. rosenbergii 
 

Species-Specific Primer Design and Validity 
Testing 

Two primer sets were designed using Primer3 
v0.4.0 software. The primer set CQCOI_F1_R2 
and CQCOI_F2_R3 produced the amplicon size 
of 119bp and 175bp respectively. Each primer 
sets GC content were 55%. The information about 
the two primer sets is summarised in Table 1 
below. In-silico test indicated both primer sets 
were theoretically species enough to detect only 
the target species C. quadricarinatus after BLAST 
in the NCBI database. This is because the primer 
sequence has index of similarity between 93.37% 
to 100% with the C. quadricarinatus sequences 
with the Genbank. which indicate very high 
accuracy. Also, the sequences from newly 
designed primer sets do not match with the 
closely related species of C. quadricarinatus used 
in this study.  
 
 

Table 1. Properties of species-specific primer 
sets designed using Primer3 software 

Property CQCOI_F1_R2 CQCOI_F2_R3 

PL F1, 20 bp 
R2, 20 bp 

F2, 30 bp 
R3, 25 bp 

Tm F1, 59.54°C  
R2, 59.95°C  

F2, 61.9 °C  
R3, 64.1 °C  

PPS F1, 7.0  
R2, 4.0  

F2, 4.0  
R3, 6.0  

AS 119 bp 175 bp 

GC% 55 55 

PL Primer Length; AS Amplicon Size; PPS Primer Pair 

Score 

Species-Specific Primer Performance Test 
The result of PCR amplification of both primer 

CQCOI_F1_R2 and CQCOI_F2_R3 at annealing 
temperature of 60 °C showed non-specificity of 
the primers (Figure 2). At this level of temperature 
on former set of primer, another two species (P. 
clarkii and M. rosenbergii) were also amplified 
(Figure 2a). While on the latter primer set, non-
specificity was also observed by the amplification 
of P. clarkii on the same temperature (Figure 2b).  
 

 
Figure 2: PCR amplification for species-

specific primer at annealing temperature 60°C 
(a)CQCOI_F1_R2 (b) CQCOI_F2_R3. CQ 

C. quadricarinatus; CD C. destructor; 
PC P. clarkii; UG M. rosenbergii 

After adjusting the annealing temperature to 
64 °C and run, only C. quadricarinatus samples 
were successfully amplified for both specific 
primer sets designed (Figure 3). The result 
showed the clear bands at approximately 119bp 
and 175bp for CQCOI_F1_R2 and 
CQCOI_F2_R3 primers respectively. Thus, 
CQCOI_F2_R3 primer set band is more specific 
and clearer compared to the CQCOI_F1_R2 
primer bands (Figure 3a and 3b). Hence, 64 °C 
revealed to be a specific temperature towards C. 
quadricarinatus for both primer sets.  
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Figure 3: PCR amplification for species-

specific primer at annealing temperature 64°C 
(a) CQCOI_F1_R2 (b) CQCOI_F2_R3. CQ  

C. quadricarinatus; CD C. destructor;  
PC P. clarkii; UG M. rosenbergii 

PCR optimisation was conducted again on the 
specific primer sets using annealing temperature 
of 68°C. This is for further confirmation and 
authentication that the designed primers can only 
work on C. quadricarinatus. However, only one 
band of C. quadricarinatus was visualised on the 
gel with an unclear smeared band of P. clarkii 
(Figure 4a). Figure 4b further showed that only P. 
clarkii was amplified using this temperature value. 

 
Primer Test on Water Samples 

Although, both primer sets were proven to be 
species specific on C. quadricarinatus at 64 °C. 
But, only CQCOI_F2_R3 was selected because it 
possessed a longer primer length which can 
increase its specificity. Also, brighter bands were 
produced when tested with tissue samples as 
shown earlier in Figure 3b. In total of four DNA 
extracted from water samples, only sample of C. 
quadricarinatus were successfully amplified 
showing a bright single band, visible at 175 bp 
(Figure 5). 

 
 

 
Figure 4: PCR amplification for species-

specific primer at annealing temperature 68°C 
(a) CQCOI_F1_R2 (b) CQCOI_F2_R3. CQ  

C. quadricarinatus; CD C. destructor;  
PC P. clarkii; UG M. rosenbergii 

  

 
Figure 5: PCR amplification for CQCOI_F2_R3 
primer at annealing temperature 64°C using 

eDNA. CQ C. quadricarinatus; TW  
Tap Water; TF Tilapia Fish 
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DISCUSSION 
The current study presents a newly-designed 

species-specific primers capable of detecting the 
presence of invasive C. quadricarinatus from 
environmental samples, even at low 
concentrations or quality of the species’ DNA. 
This is possible due to the high abundance of 
mtDNA copies in the mitochondria (Benecke and 
Wells, 2001; Ahmad-Syazni et al. 2017; Ha et al. 
2017; Khaleel et al. 2019, 2020). Also, the COI 
region of mtDNA is highly conserved with low 
intra-species mutation rate, which qualifies the 
region to be useful in the design of species-
specific and universal primers (Otranto and 
Stevens, 2002; Ardura et al. 2017; Crane et al. 
2018).  
 

Species-Specific Primer Validity 
The primers designed in this study yielded an 

excellent output. This is achieved by observing 
some recommended principles such as primer 
length, GC content, annealing and melting 
temperature (Singh and Kumar, 2001). According 
to Wu et al. (1991), primer with a minimum length 
would have better efficiency and specificity. 
Hence, recent studies found out that primers 
having 17 to 34 nucleotides perform better (Ardura 
et al. 2017; Crane et al. 2018). This corresponds 
to the primer sets of the current study with 
minimum of 20 bp and maximum of 30 bp. 
Furthermore, the GC content (55%) values of 
designed primers fall within the recommended 
range values of 50-60% (Singh and Kumar, 2001) 
and 32-61% (Crane et al. 2018) for primer design. 
Higher GC contents lead to primer-dimer and 
reduce the chance of obtaining the targeted 
product. Self-complementary score indicates the 
possibility of the primer for binding itself and other 
primer pair. Untergasser et al. (2012) further 
explained that self-complementary score of a 
designed primer should be below 8, which 
corresponded to the result of the current study 
designed primers. Values above 8 could result in 
lower tendency for self-binding. 

Annealing temperature plays a vital role in the 
testing and validating processes of primers sets in 
this study. Previous study showed that annealing 
temperature had significant effects on the 
detection rates (Doi et al. 2019) and quality of 
PCR products. The differences in melting 
temperature, as well as that in the primer 
sequence, such as G/C content, might have 
influenced the responses observed for PCR 
annealing temperature (Doi et al. 2019; Naqib et 
al. 2019). Hence, 64°C was observed to be the 

best for precise amplification of C. quadricarinaus. 
Before applying the newly-designed primers into 
the wild ecosystems, the cross-amplification tests 
were conducted involving the closely related 
indigenous species (C. destructor, P. clarkii, M. 
rosenbergii). The result proved that only C. 
quadricarinaus can be detected. This will provide 
a high probability of detecting only targeted 
species in the wild by new primers designed. 

 

Species-Specific Primer Performance Test 
The primers must be species-specific to 

ensure high-confident identification of targeted 
species (Díaz-Ferguson et al. 2014). Despite both 
primer sets showed positive results to amplify the 
mtDNA of C. quadricarinaus from its tissue 
samples. Only CQCOI_F2_R3 primer was chosen 
to be tested with eDNA extracted from the water 
samples. This is because, it possessed longer 
base pairs of 30bp (forward) and 25bp (reverse) 
which is longer enough for adequate specificity to 
bind to the mtDNA template of the targeted 
species. This also explained the reason for 
obtaining highly bright and precise bands at 64°C 
in Figure 3b. More so, previous study further 
explained that the usage of primer having 28bp to 
35bp was essential in distinguishing homologous 
genes from different species (Singh and Kumar, 
2001). 

The detection level is quite important 
especially when the species-specific primers are 
needed for early detection of invasive species. 
Usually, at the early invasion stage, non-
indigenous species are anticipated to be sparsely 
distributed with a very low density (Ardura et al. 
2017). Here the newly-developed primers are 
expected to yield PCR amplification with clear 
amplicons at low concentrations of DNA, thus 
enabling the detection of targeted species from a 
few cells in a sample. The main benefit of the 
current developed primers is that they have very 
short target fragment (119bp and 175bp), and can 
be amplified from degraded DNA samples. It is 
previously reported that DNA fragments of 
approximately 400bp might survive for up to 1 
week at 18°C in the lake habitat (Matsui et al. 
2001). 

 
CONCLUSION 

In conclusion, two species-specific primer sets 
of invasive C. quadricarinatus (CQCOI_F1_R2 
and CQCOI_F2_R3) were developed with high 
specificity towards its target species. We 
recommended the use of primer CQCOI_F2_R3 
for field testing due to its more robust primer 



Syafiq Aiman et al.                                                  Development Species-Specific Primer for C. quadricarinatus 

 

    Bioscience Research, 2020 volume 17(SI-1): 90-99                                                             96 

 

design and performance. Since environmental 
water samples can contain cells and tissues of the 
species present in the water column, utilizing 
eDNA for invasive species detection could be a 
promising tool and can be incorporated into 
monitoring and management plans related to early 
detection, rapid response, and policy decisions for 
conservation. 
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